Schistosomiasis (Bilharzia): Is it a biological Weapon?

Shams A. Rashwan
shamsrashwan@gmail.com
Informatics Research Institute, City of Scientific Research and Application Technology, Alexandria, Burg ElArab, Egypt

Abstract: Egypt spends lots of money for funding the development of medicine for this disease. Is this the good direction of research? Villagers, who do not obey to instructions of doctors in their villages of avoiding to swim in the Nile River, do not deserve all this attention while the Egyptian army, in the other side, searches all possibilities to avoid war with Israel. Such a biological weapon may differ.

Keywords: Bilharzia, Biological weapon, Genetic engineering

1. Overview

Many Egyptians think that the effect of Bilharzia on the Egyptian body is not serious because of the adaptation over generations. There is no scientific research concerning the effect of Bilharzia on other races. Even if this parasitic disease has a small effect on the other races, we can use the genetic engineering to produce more developed kinds of bilharzia that are able to kill and threaten the human race.

The question is why we choose bilharzia?

We must know that bilharzia enters the human body without his feeling and remains in the liver-

Penetration of the human skin occurs after the cercaria have attached to and explored the skin. The parasite secretes enzymes that break down the skin's protein to enable penetration of the cercarial head through the skin. As the cercaria penetrates the skin it transforms into a migrating schistosomulum stage.

The newly transformed schistosomulum may remain in the skin for 2 days before locating a post-capillary venule; from here the schistosomulum travels to the lungs where it undergoes further developmental changes necessary for subsequent migration to the liver. Eight to ten days after penetration of the skin, the parasite migrates to the liver sinusoids. S. japonicum migrates more quickly than S. mansoni, and usually reaches the liver within 8 days of penetration. Juvenile S. mansoni and S. japonicum worms develop an oral sucker after arriving at the liver, and it is during this period that the parasite begins to feed on red blood cells.

Now we need a strong poison that affects the liver, which is the aflatoxin.

High-level aflatoxin exposure produces an acute hepatic necrosis, resulting later in cirrhosis, and/or carcinoma of the liver.

Taking the gene of producing the aflatoxin from the genomic sequence of Aspergillus flavus (Aftr) and adding this gene to the genomic sequence of Bilharzia may convert the bilharzias to a kind of toxic bilharzias.

In any way, the advice for Egyptian research is to stop developing medicine for treatment of bilharzia and take it as a basis for biological weapons.

2. References


Shams Rashwan
PhD student in computer science and automatic control department, Faculty of Engineering, Tanta University. Currently, Eng. Rashwan is a research assistant in Informatics Research Institute, City of scientific research and Application Technology, Burg El Arab, Alexandria, Egypt